Citation: Anal. Chem., 2019, 91 (9), 5874–5880
Abstract
Circulating microRNAs have been identified as potential biomarkers for early detection, prognosis, and prediction of several diseases. Their use in clinical diagnostics has been limited by the lack of suitable detection techniques. Most of the current technologies suffer from requiring complex protocols, not yet able to deliver robust and cost-effective assays in the field of clinical diagnostics. In this work, we report the development of a breakthrough platform for profiling circulating microRNAs. The platform comprises a novel silicon photomultiplier-based reader in conjunction with a chemical-based method for nucleic acid detection. Accurate microRNAs profiling without extraction, pre-amplification, or pre-labeling of the target is now achievable. We designed and synthesized a set of reagents that combined the chemical-based method with a chemiluminescent reaction. The signals generated were read out using a novel, compact silicon photomultiplier-based reader. The platform sensitivity was determined by measuring known concentrations of hsa-miR-21-5p spike-ins. The limit of detection was calculated as 4.7 pmol/L. The platform was also successfully used to directly detect hsa-miR-21-5p in eight non-small cell lung cancer plasma samples. Levels of plasma hsa-miR-21-5p expression were also measured via TaqMan RT-qPCR. The successful integration of the unique chemical-based method for nucleic acid detection with the novel silicon photomultiplier-based reader created an innovative product (ODG platform) with diagnostic utility, for the direct qualitative and quantitative analysis of microRNA biomarkers in biological fluids.